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of nodal constraints are considered, and the corresponding algebraic 

and differential equations relating curvature, angle, arc length, and 

tangential force are derived in a simple manner. The results for closed 
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VARimONAL STUDY OF NONLINEAR SPLINE CURVES 

by 

E. H. Lee and G. E. Forsythe 

Stanford University 

1.      Linear and nonlinear splines.      Let    A   be a finite ordered 

set of points in the euclidean plane, with cartesian coordinates    (x ,y )  , 

r   = 1, ...,n-l , through which it  is desired to pass a smooth curve.    An 

old technique in drafting is to use a mechanical spline to form a smooth 

curve   C    that contains   A .    In the present day of automatic plotters, 

numerically controlled milling machines, and so on,  it is more important 

to find a mathematical or computational representation of a suitable   C 

than to draw it.   Thus one uses some mathematical model of the mechanical 

spline. 

By far the most widely used model is a linear (cubic)  spline, suitable 

when the curve   C    in some   x-y   coordinate system is the graph of a 

function    f , so that   y = f(x)  ,    x   < x < x    .    Assume that 

x    < x    < ... < x    .    The linear spline can be defined as the unique 

function    f    for which 

x n p 
\     f"(x) dx (1) 

x0 

is minimized amont' all twice continuously differentiable functions assuming 

the value   y     at   x      (r - 1,2, ...,n-l)  .    (According to this definition, 

f    will satisfy the natural end conditions    f"(x )   = f"(xn)   -- 0 .    There 

are alternative treatments of the end conditions.) 

mmm 



The linear spline so defined turns out t o be a (usually) diff rent 

cubic polynomial in each interval (x 1,x ) , with matchin values, r - r 

derivative:s, and second derivatives (and henc curvat ur s) at acll 

interior node x (r r 
1, 2, • •• , n-1) • The spline will actually b a 

straight line segment for x0 S x S x1 and xn - l S x S xn . 

The theory of linear spline~ has grown eno1mously in th last ecad , 

and these curves and various linear generalizations have oth practical and 

theoretical importance in the approximation of known functions , solutions 

of differential equations, and so on . The reader can find an exposition, 

with generalizat i ons and applications, in Ahluerg, Nilson, and Walsh [1] . 

Linear splines are invariant under linear changes in the y -coordinate 

alone, as Podolsky and Derunan ( 9] point out . Thus they ar suited t o 

such problems as the interpolation of data, where x and y have 

different meanings. On the other hand, linear splines are not inva Lant 

under rotations of the x-y coordinate system, and hence are not well 

suited to the interpolation of geometrical points in the euclidean pl ane. 

Moreover, linear splines cannot be used directly to define a closed. curve 1 

C in the x-y plane. 

For the purposes of interpolatinG poi nts in the euclidean plan . it 

is appropriate to find a matherr.atical model wh:ich is invat·iant under al2. 

similarity transformations . The model we treat is some imes called the 

elastica, but we shall ref er to it as a nonlinear splin,·:. . As a preliminary 

to work on actually computing nonlinear splines, we have inves tigated th i r 

precise definition, includi n varia ional properties , d fini ng quations , 

continu~ty condit ions , and end conditions , both for open and closed cur v 
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The term nonlinear spline is used variously in the literature: 

(a)     If the integrand    f'Cx)      of (1)  is multiplied by a aonconstant 

weight factor,  sometimes the function that minimizes the altered problem 

is called a nonlinear spline,    (b)    Suppose one is given a function   <p(x) 

to be approximated by a linear cubic spline passing through   n-1   points 

(x ,<p(x )) , and that the   n-1   abscissas   x     are varied until the spline 

best approximates    <ji    in some given norm.    Sometimes the result is called 

a nonlinear spline.    However,  in both (a) and (b) above the splines 

satisfy a linear differential equation in each interval, whereas our 

nonlinear splines satisfy a nonlinear differential equation. 

We do not claim that computing nonlinear splines will necessarily be 

an economical way to interpolate points in the    x-y   plane.    Moreover, 

nonlinear splines are not invariant under linear changes in the y-coordinate 

alone, so that they seem ill-suited to the Interpolation of data where   x 

and   y   are unrelated . 

We have been interested only in studying as carefully as we could the 

mathematical nccure of these nonlinear splines.    In this paper we present 

a variational treatment of nonlinear splines,  emphasizing the natural 

boundary conditions of the problem.   We believe that our treatment of 

the closed nonlinear spline may be new. 

?..     Previous work.      In the theory of elasticity, our matheraatictl 

model of the mechanical spline is called a thin beam or elastica, and its 

treatment dates back to James and Daniel Bernoulli, Euler, Kirchhoff, 

and others.    The history and theory are summarized by Love [7].    None of 

those treatments dealt directly with the use of the nonlinear spline to 

interpolate points,   and there was little discussion of closed splines. 

mmmmmmmmaimmammmmimm 



The earliest discuss i on that we have seen i n print of th use of 

nonlinet\r splines for :int~rpolation is that of J\jrld toff and dr' l ~nor I :~ 1. 

That paper refers to excellent laboratory reports by Fowler and Wilson [ l1] 

and by Birkhoff, Burchard, and Thomas [3]. Glass [5] briefly desc r ibes 

computations of open nonlinear splines in cartesian coordinates. 

Hosaka [6] describes the generation of nonlinear splines on a digi tal 

differential analyzer. Woodford [12] describes an iterat ive procedure 

for interpolation with open nonlinear splines that is much faster t han 

Glass's algorithm; he also works with cartesian coordinates. 

In his Ph.D. dissertation, Mehlum [8 ] discusses the nature of 

nonlinear open splines, again using a cartesian coordinate system rotated 

to a convenient local orientation. He also gives an algorithm for 

computing an approximation to the nonlinear spline by a succession of 

circular arcs meeting with a continuous tangent but discontinuous 

curvature. 

Basic concepts of bending theory of thin beams. Of all the 

curves that pass in turn through the ordered set A of points •x y ) 
' r' r 

mentioned in the introduction, we shall consider as admissible only those 

~hose tangent direction is continuous everywhere, and whose curvature i s 

piecewise continuous, with disc ontinuities in curvature permit ted on 

any finite set of points. A plausible suggestion for the smoothest of 

these admissible curves is that the integral of the square of t he curvature 

with r espect to arc length should att ain a minimum. This compri ses a 

simple representation of t he concept of a curve passing through the points 

wit h minimum total bend ampli tud :, and will be utilized in t he f orm of t he 

necessary condition 
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I n    2 
& J      < ds = 0 (2) 

'o 

where    K    is the curvature,    s    is arc lenf^th,    I -1.    i^ the total lonßth 

of the curve,  and    o    is the symbol for variation.    The integral in (2)  is 

proportional to the strain energy in a bent spline according to Euler- 

Pernoulli beam theory,  and we show in Section h that (2)  is the variational 

fom of the conditions of equilibrium for the spline with forces applied 

only at the support points.    It seems, therefore,  appropriate to investigate 

spline interpolation in terras of mechanical bending theory, and it will be 

shown in the present paper that this approach does lead to the introduction 

of variables which are particularly convenient for interpreting spline 

interpolation,  and perhaps also for computing splines. 

Bernoulli-Euler theory, as described in detail by Love [?]>   is the 

simplest form of beam theory, and considers only bending defomations, 

nenlectint: shear deformations and stretching of the center line of the 

beam.    Guch an approximation is satisfactory for oeams with cross-section 

dimensions small compared to the span between supports, as clearly applies 

for splines.    Such restricted deformations are introduced by requiring 

that plane sections normal to the center line in the undeformed state 

remain plane and normal to the deformed center line,  and that the center 

line of the beam does not stratch. 

The forces and moments on a beam element are shown in Figure 1, 

where   M    is the bending moment,    S    is the shearing force,  and    P    is 

the longitudinal force.     (The convention is    P > 0    for tension,  and 

P < ■>    for compression.)    The assumptions about deformation mentioned 

above,  cor.bined with Hooke's law relating stress and strain,  yield 



M = EI«:   , (3) 

where    E    is Young's modulus of elasticity,    I    is the second moment 

of the section about the axis of bending, 

< = d0 
dF   ' CO 

and    6    is the angle between the beam and the x-axis.    The equations of 

equilibrium for each unloaded span between supports,  which are deduced in 

Section k, are as follows: 

for moments: 

f*s =    0  ; (5) 

for normal forces: 

dS 
d^+ ^   =   o ; (6) 

for longitudinal forces; 

te-SK    =    o     . (7) 

It Is convenient to work in terms of reduced force variables: 

M    = 

Then (5)  and (6)  give: 

S    =    - 

iL 
EI 

dK 
ds    ' 

EI 
_P_ 
EI (8) 

(9) 

P   =   -=r 
2 

1   d  K 
K    ,  2     ' 

ds 
(10) 

and (7) becomes 



S1T4^1   '-   o   . dl) 
ds 

or 

^    ^    +     ^ -: P    +     ^ Cr_1     , (12) 
ds ' 

where    cr_-i    is a constant of integration for the r-th span. 

We must now consider the boundary conditions at the supports which 

constrain the spline to pass through the required points    Q,     of   A . 

Tae least constraining such support is a freely rotating sleeve attached 

uo the point   Q      that permits free rotation of the spline and free 

sliding through the sleeve.    The only support force is therefore normal 

to the sleeve,  and this does no work on a possible motion of the spline 

through the sleeve.    A more constraining support would be a pin through 

the spline which permits free rotation but no sliding,  or a pin with 

rotation prevented.    In none of these cases is work done by support forces, 

since either a force (or moment)  component is zero,  or the associated 

motion is zero,  and such supports are termed workless constraints. 

Figure 2 shows a spline passing through freely rotating,  sliding 

sleeves at    Q,.,..,.Q    .  ,  where    Q_    and   Q     are the free ends of the 1        '  n-1 0 n 

spline.    The conflairation of the spline could be analyzed using the 

equations given above,  but a simpler and more revealing approach for our 

purposes  is to observe that this spline forms a conservative mechanical 

system with potential energy given by the strain energy of the spline, 

; 
, n 

U  =-     "       (-.IrC 7l)te     ; (15) 

3 



there are no other contributions to U , since the external forces are 

all worklesr. The theory of conservative systems [11] tells us that at 

a stable equilibrium configuration of the spline, the energy (13) is a 

local minimum, which implies (2) for a uniform spline with El constant. 

Moreover, any constraint added to the system, such as chanyinc a freely 

sliding sleeve to a pin support that prevents sliding, will either increase 

the potential energy in the corresponding equilibrium configuration, or 

Leave it unchanged if the added constraint happens to be compatible with 

the configuration. Thus 

J  ^ dM 

will also exhibit a local minimum in the configuration shown in Figure 2, 

relative to variations of the constraints. Note that the free ends Q 

and Q , with no forces or moments applied, also provide workless boundary 

conditions, and any constraint on their freedom of motion will increase 

the energy expression (1^). Thus a local minimum of the integral (I')) 

corresponds to free ends and freely rotating sliding constraints at 

Q. -A n-1 * 
This cannot bo a global mininum in the cpncc of all 

configurations, since a lower value of the integral in (Ik)  can bo achieved, 

as pointed out in [2],  by introducing large loops between supports, which, 

of course, modify the topology. 

In the next two sections we deduce the least constraining support 

conditions for the spline passing through the points Q1,...,Q   by 

seeking the minimum of the integral (1^) directly through analysis of the 

variational problem (2), and deduce the natural boundary conditions that 

yield this minimum energy configuration. Although this approach simply 



reproduces the minimum constraint conditions shown in Figure 2,  and 

anticipated above on the basis of cons irvative system theory,   it is 

independently useful,   since it permits investigation of the closed spline 

problem in Section ^.    The latter problem cannot be treated directly by 

the theory of a constrained conservative system,  because we must consider 

the effect of variable arc length for the closed curve,  and this changes 

the system more than simply by imposing a constraint. 

I».      Deductions from the variational statement.      We consider the 

variational statement  (2) with integration limits    K    and    t      for a 

curve constrained to pass through the points    Q,,,'..>Q,    -,    with end 

points    Q,      and    Q,     .    The points    Q,n, ...,Q      correspond to values    I  ,...,1 

of the arc length    s   .    In the present section we do not consider end 

conditions.    Thus we do not care whether the curve is open (as in 

Figure '?)   or closed    (Q      and   Q      coincide) .    We shall prove in this 

section that if such a curve satisfies  (2)   -- and is hence a spline in 

our sense -- then the spline is the position of a thin beam satisfying 

equations  {')) - (7)   of Section % 

Because of the constraints,   (2) takes the form 

i 

L     j       ^ ds  = 0       . (15) 
r=1 '    n r-1 

The fact that the spline passes through the points   Q , ...,0,     prescribes 

the followinr' constraint conditions for    r = 1, ...,n  : 

10 



I'  cos 0 ds - x + x n  -^ 0 , 
J r   r-1 

(J-a) 

r-1 

t 

J  sin ö ds - yr 
+ VT_1    " 0 > 

T-l 

(If.b) 

where Q  has the coordinates (x ,y ) . Note in (l^a), (l6b) that x 

and y  are prescribed numbers for r = 1, ...,n-l , whereas x , ,yn , x 0  '   -'0  '    "n 

and   y     are free to vary. 

We follow the standard techniques of the calculus of variations and 

introduce Lagrange multipliers    \    1    and   p,    ,     for  (l^a)  and (l^b), 

respectively    (r = 1,...,n)   .    We take care of the constraints (l^a),   (l^b) 

by seeking a stationary value of the functional 

n r 

II  < **+ L ^ 
r=l r=l 

'r-1 

('       cos e»ds - x   + x    ., 
J r        r-1 

'r-l 

n 
+   ^  ^r-1 

r^l 
f        sin 0ds - yr + y^ 

!r-l 

n 

L 
r=l 

J      (*<   +  Xr_1 cos 6 + iir_1 sin 0). 

r-1 

+   X      -,(X      ,    -   X   )   +   y,      ,( 
r-1    r-1        r       *r-V 'r-1 " V (17) 

11 



with respect to a general smooth variation &ö(s) , and variations 

fix  , by    , bx    , by    ,  combined with sliding through the pivots 

bs(Q  )   -- &l v   r' r (r = 1|.. .>n-l) (18) 

V Setting the variation of (17) to zero and integrating by parts,-'   we get 

the form 

J^ { 2K be 
r=l 

dK 
I  [" 2dF " Xr-1 sin e + ^r-1 C0S 6]be  ds 

r-1   r-1 

+ [K   +  \    , cos ö + u . sin 0]   51 
r-1       pr-l      .-   i 

[K   +  Xr-1 C0S e + ^r-1 Sin d] •»•      &ir-l 
fr-l 

* \() % > ^0by0 - ^^ bxn - ^^ 5yn (19) 

egratin.- by parts,  we assume that the curvature    K{B)    of the 
zing curve is continuously differentiable in each interval 

s < t     .    If the curvature    <(E)    of the minimizing function 

ur.ed only to be piecewise continuous,   but    ö(s)     is continuous, 
t can be proved by a different argument based on a lemma of 
c-Rcyriiond that    -(s)    is in fact continuously differentiable 
h  interval.    This justifies our introduction of the broad class 
icsiblo ^urvoc a*   the start of Section 3. 

+ 
t    ,   t       in t::o following we mean the limiting values    / +0 

In int 
in in im i 
/ . -1   v 

is asc 
tii ~\f\      i 

lu 3üi 
in eac 
of a.L-. 

and    / 



The inteeral term of (19) yields for r = 1, ...,n : 

- 2 x- - X    .   sin e+u    n  cos 0=0    ,     I    1<s<i       , (20) ds        r-1 Kr-1 '       r-l r    ' v     ' 

which can be integrated, using equations analogous to (iCa)  and (I'b) 

for an open interval, giving 

K(S) = «{t^ - —^ (y-y^j)  + -^ (x-Vl^ ' (r = l,...,n). (21) 

Identifying    K   with    M ,  as  in (8),  we see that   (21)  comprises a moment 

relation for the part of the spline between the arc lengths    /    1    and    s  , 

as illustrated in Figure j.    Thus the Lagrange multiplier factors 

K _./2   and    ^      /2    are simply the force components acting on the spline 

at    / (r - 1, ...,n)   .     By equilibrium considerations, these same force 

components can be considered to act on any section of the spline with 

f    ,  < s < I    ,  so that,  taking components along and normal to the spline, 

the tensile force    P   and shear force   S    are given for    I    ..   c: s < I      by 0        r-l      r •' 

P - - -V^ cos 0 - -^ sin 6    , (22a) 

ö   r-l .  «  ^r-1    . /. , , \ S = ^— sm 0 -  - cos 0 . (22li) 

Differential equation (20) can be alternatively integrated by 

writing 

dK   dK  d0     dx 
ds ~ d0 * ds r     '  de ' 

whence, in view of (22a), 

,2 
V+P-c,       (I T < a < I )  , (;.i) 2       r-l r-l      r ' 

where    c    ,    is an integration constant. 



mmm 

Notr that (20) and (PSb) yield (9).    Differentiatinc (20) with 

respect,  to    s    and usiny (?2a)    r.lve (10).    Finally,   (12) and (11) 

lollow from (23).    The basic equations (5),   (6),  and (7)  simply express 

(0) - (12)  in different variables,  and hence the equilibrium equations 

(5) - (7)  are consequences of the variational statement  (2). 

It could conversely be proved that the satisfaction of equations 

(:}),   (*■),  and (7)  implies that the variational condition (2)  holds.    Thus 

the variational condition (2)  and the thin beam equations  (5) - (7) provide 

equivalent  foundations for the theory of nonlinear splines. 

Since 6ö    is a continuous variation, 

&0(/P  = &e(/p (r = l,...,n-l)    , (2*0 

and the first term of (19) then demands that 

KiT)  = K{t+T) (r = l,...,n-l)     . (25) 

In view of (18),   (22a),  and the terms in (19)  containing   51    , 

we then find that 

P(ip  = P(^) (r = l,...,n-l)     . (26) 

5.      The open spline.      For the configuration shown in Figure 2 with 

free ends,    oxn ,  fty    ,  &ö(l_)  ,  6x    ,  6y    ,  66(1 )    are arbitrary 

variations.    Hence the first  ind last terms in (19)  demand that 

K(l0)   = </n)   = \  = ,0  = X^! = ^ = 0     • (27) 

Time  from  (22a,  22b)  the end conditions become 

Kit)   - P(/   )   = S(iJ   = K{1\   = P(JJ   = S(i  )   = 0     . (28) 

1^ 



Thus the variational condition (15)  implies that the open spline 

satisfies the natural boundary conditions (25),  (26),  (?8), which 

are precisely the condlt:ions associntpd with the least constrain in/'; j:upporL 

depicted in Figure ?. and discussed in Section 'j.    In view of 'hese 

relations,   (25)  holds for the entire spline    '0 < s < I      with 

c    ,  = 0    for all   r : r-1 

— + P    =    0     , 

and hence the differential equation 

r 

(29) 

*K  .   ^ 

ds 2
+T    =    0 (^) 

is valid as a special case of (12)  for the threaded spline with free 

ends.    This equation has been given by Birkhoff et. al.  in [3].    Note 

2        2 that,   in view of (25),   (50)  requires    d /c/ds '    to be continuous across 

supports,  although in general   d/c/ds    is discontinuous, because the 

lateral support force changes the shear force   S , which satisfies (9) • 

We wish to emphasize that our equations apply to any spline curve 

that satisfies the constraints of the problem, no matter what its 

topology.    As is pointed out in [2],  there may be sets of nodes    A    for 

which no spline exists and,  if any spline exists for    A , there may exist 

others satisfying the same constraints, with different numbers of loops 

between some adjacent pair of nodes.    We know of no theorems about the 

existence or uniqueness of solutions to these problems. 

15 
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i.     Closed nonlinear splines.      Now consider fitting a smooth 

closed curve through a set of prescribed points.    We will express this 

situation by utilizing the previous development,  but requiring that the 

points   Q     and   Q      be coincident at an n-th prescribed point, and that 

the tangent to the curve be continuously turning also through that point. 

Thus,  for some integer   m    related to the number of loops in the curve. 

X0 = Xn    '    y0 = yn    '    en = e0 + ^    ; (31) 

t I 
n r n r 
^     J      cos Ö ds =   2]     [     sin Ö ds    =0    ; 
r=l r=l 

r-1 r-1 

n r 
£      f      /c ds   =   2 m TT 
r=1£     , r-1 

(52) 

The deductions from (19)  are unchanged from those described heretofore, 

apart from the contributions at    s = ln   and    s = i     .To obtain a local r On 

minimum of the integral {1^),   in order to find e "smoothest" closed curve 

through the   n    prescribed points, we must compare curves of slightly 

different total arc length,  and this can be achieved by selecting the 

variations    8/      and    61      to be unequal.    Since the tangent to the curve 

prior to the variation is continuously turning,  and that after the 

16 
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variation must also be, the variations at i^ and t      must satisfy 
On' 

60(io) + ^(i0)5i0   =   5e(/n) + *(in)^n   • (:o) 

It is not correct to demand that    Bö(irt)  = o6(£  )  ,  since elements of 

curved arc have been inserted into the loop in superposing the variation. 

Since    ot    ,    6i    ,    56(in)    and    Be(f  )    are no longer independent, 

the terms arising from these variations in (19) must be combined with 

(35) to deduce the natural boundary conditions at the support   Qn = Q    . 

At the boundaries    I      and    i    ,   (19)    and (22a)  give: 

2[K(tn)beitn) -K{t0)be{i0)] + [K2(in) -2P(£n)]&in 

-  [K2il0)   ■■ 2P(i0)]6l0     =    0     . Oh) 

Eliminating    5ö(i0)    from (55)  and (5^)  gives: 

[K2(i0) +  2P(i0)]Bi0 + 2[K(in)   - fC(l0)]5e(in) 

+  [^2(£n)   - 2<(l0)K(in)   -2P(in)]6in    .    0    , (5b) 

where the variations    &£_ ,    odil  )    and    b£      can now be considered 
0 ' v  n' n 

arbitrary and independent.    Thus 

<{lQ)    =   <(in) (56) 

and 

[K
2
 + 2P)|      =    (K2 + 2?)^      -   0    . (57) 

0 n 

Thus  (29)  and (50)  again apply throughout the spline.    Hence the natural 

boundary conditions for (15)  yield the same integration constant c    -,   = 0 
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in (12)  for the closed spline as for the free-ended open one.    However, 

for the closed spline,  this result does not follow from the least-constraint 

discussion of conservative systems.    In fact,  either adding or removing 

an element of arc  from the optimum configuration increases the strain 

energy at equilibrium and hence exhibits this property associated with 

imposing additional constraint. 

7 .      Comments and examples.      When curve fitting with smooth curves 

is investigated, the variational principle (15)> utilizing natural 

boundary conditions,  calls for continuity of    K   and   P   across supports, 

as well as the continuity of   6   prescribed in the formulation of the 

problem.    Geometrical discussions of the problem commonly take into 

consideration only continuity of   Ö   and    K , but this seeming omission 

of    P   is in fact automatically taken care of by the differential 

equation (30),  satisfied by the spline in each span between supports, 

since (50)  and (29)  are synonymous. 

The variational principle (2) will yield (25)  and (10),  and hence 

the differential equat .ons  (12)  or (11),   for types of support other than 

the least constraining one treated in Section h above.    These include, 

for example, pin supports which prevent sliding,  built-in supports which 

prevent both displacement and rotation,  and a fixed-angle freely displacing 

constraint.    In general,  with such supports, the constants    c      in (25) will 

not be zero,  and will change from span to span along the spline,  so that 

the differential equations  (IP)  or (11)  govern the deflection of the 

spline spans,  and not the special case  (50).    These comprise the more 

general elastica curves discussed In | Y |,   for which applied forces are 



not all acting in the direction of the normal to the spline at the point 

of application, or for which, in the closed spline case, the spline does 

not have the optimum length corresponding to (37). Note that in the 

case of a pin support ol must be zero, and when rotation is prevented 
r 

58(1 ) = 0 , and it is such conditions which modify the treatment of the 
r 

previous section. 

The limiting case of linear splines corresponds to beam theory when 

the deflections y from the unstrained spline, considered to lie along 

the x-axis, are such that \dy/dx\ << l • To sufficient accuracy, x can 

replace arc length s and the support forces can be considered to act in 

the y direction, and then the longitudinal force P is zero throughout. 

From (10) the differential equation for the spline then takes the form 

= 0 
' 

(38) 

with the linear approximation 

.K (39) 

This immediately leads to piecewise cubic polynomials for y as a function 

of x. The variational principle for linear splines is that they minimize (1). 

Schweikert [ ll] has treated linear sp~.ines under tension, in which 

end supports supply a positive longitudinal force P , which is constant 

throughout the b~am, for freely sliding constraints. By linearization 

of (10) it follows that 

2 
-~ p 2 

dx ' 
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so the solution between successive supports takes the form 

y = c    + ex + c    cosh(ax) + c,   sinh(CTx)     , 

where   a = VP .    One reason for introducing tension is to remove extraneous 

pointc of inflection of the interpolating spline curve.    The variational 

principle for linear splines under a given tension    P   is that they 

minimize the tota1  energy of the system,  arhich leads to minimizing 

x 

J      [f"(x)2 + Pf,(x)2]dx 
X0 

among all functions    f   that satisfy the constraints and have continuous 

second derivatives.    One could also study nonlinear open splines under 

tension. 

The theory presented heretofore leads to sane interesting character- 

istics for particular situations.    For example,  both for the open spline 

with minimum constraints depicted in Figure 2,  and the closed spline of 

optimum length,   (29)   requires that    P   be zero or negative,  and zero only 

where the spline arc  is straight.    Thus, whatever the geometry of the 

curve being fitted,  tensile resultant longitudinal forces will never occur 

(unless they are imposed at the ends). 

Consider now fitting a closed spline through the vertices of an 

equilateral triangle.    If the spline is bent  into a circle, we see 

from (3) that    M    is constant, whence from (5)      S = 0 ,  and from (6) 

P --  0  .    Hence (29)   is violated by a circle.    To satisfy (29)  some 

additional arc length must be added to produce a corapressive force    P . 

The "optimum" spline will take the form illustrated in Figure h.    A quali- 

tative understanding of this deduction can be achieved by noting that 

increasing the arc  len^h for a Riven angle of bend tends to reduce the 

contribution to the integral (1^),  just as adding large loops to a spline 

configuration permits the integral {lk) to be reduced towards zero,  as 

20 

MBaaMaMBMMMHMMMi 



m—mm 

mentioned in [5].    With radius    R , the   l/R      of the integrand dominates 

the    2TTR    of the total arc length,  for increasing    R •    However,  for a 

fixed arc length and total angle of bend    (J Kds)   ,  the contribution to 

(ih)  is a minimum when    K    is constant.    Increasing the arc length of 

the spline in Figure k from the circle configuration causes a variation in 

curvature which tends to increase the integral,  offsetting the reduction 

associated with increase in arc length.   The latter dominates initially, 

to yield an optimum fit illustrated in Figure h. 

This example permits an assessment of the interpolation strategy 

expressed in (2),  since one might regard the circumscribing circle as 

providing a more natural fit through the vertices.    The advantage of 

increasing the arc length in reducing the integral (lU)  is the feature 

which leads away from the constant-curvature circle.    Inhibition of such 

a tendency can be achieved by imposing a penalty on increase in arc length, 

for example, by replacing (2) by 

i 
« n      ? 

S J     {if + k)ds    =   0   . (1*0) 

f0 

Equation (57)* and hence (29)* must then be replaced by 

so that for this simple case, choosing 

k = <o      , (UP.) 

where    K:      is the curvature of t.e circumscribing circle,  yields that 

circle as the optimum fit according to (ho).    Whether such an approach 

could be generalized is an open question. 
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If for a closed spline loop passing through prescribed points, the 

arc length is slightly shorter or longer than the optimum length given 

by (29)» the integral (lU) will be larger than for the optimum case. 

For each of these problems, with fixed arc length,   (2)  is satisfied by 

the curve form assumed by the spline.    An illustrative example is given 

in Figure 5.    For the shorter spline loop 

^- + P   >   0 (U3) 

and for the longer one 

^ + p < 0   . (WO 

These conditions will change the constant    c in the governing 

differential equation (12), which will apply throughout the spline with 

constant    cr_1    if the supports are freely sliding and rotating. 

This paper has treated the global problem of spline geometry.    The 

computation of spline functions to approximate the spline configurations 

considered here has not been discussed In this paper, and constitutes a 

challenging problem in numerical analysis.   For the open spline, the 

curvature at the first support is zero,  so that only the angle need be 

determined if an initial-value approach (the so-called "shooting method") 

is used for integration of the spline differential equation problem.    In 

the general closed spline case, both angle and curvature at a support 

must be selected for an initial-value approach, thus posing a more 

cumbersome problem.    For the problem of the equilateral triangle,  symmetry 

can be used to reduce the complexity of the general case.    However, the 

work of Woodford [ 121 makes it seem unlikely that shooting is a good way 

to compute splines. 
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Figure 1.    Forces and moments on a beam element. 
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Figure 2.     Spline passing through supports. 
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Figure 3.       Forces and moments on a  spline arc. 
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Figure \.    Spline fitted through the vertices of an equilateral triangle. 
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Figure 5. Closed splines with differing arc lengths. 
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